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Langevin dynamics of proteins at constantpH
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An application of the Langevin dynamics algorithm for simulation of protein conformational equilibria at
constantpH is presented. The algorithm is used to compute average protonation of titratable groups in ovo-
mucoid third domain, as functions ofpH, resulting in data, basically equivalent to thepH dependencies of
chemical shifts obtained from multidimensional nuclear magnetic resonance~NMR! spectroscopy, for the
protein titratable residues. ThepKa values obtained from the simulation are in reasonable agreement with
experimental data. Possible improvements of this methodology, using achievements from other fields of me-
soscopic biomolecular simulations, are also discussed.
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I. INTRODUCTION

One of the important determinants of protein structure a
function is related to the ability of side groups of some of
constituting amino acids to exchange protons with the en
ronment @1#. Quantitatively, protonation equilibrium of
given functional groupAH is characterized by itspKa value,
defined as the negative decimal logarithm of the acidic d
sociation constantKa for the proton dissociation reaction@2#:

AH
A21H1. ~1!

Introducing the well known definition ofpH,

pH52 log10aH1, ~2!

whereaH1 is the activity of protons, we can express the fr
energy change for the deprotonation process at a givenpH as
in Ref. @3#:

DG52.303RT~pH2pKa!, ~3!

which indicates that thepKa has a physical meaning of suc
a pH, at which the probability of protonation of the group
50%.

Titratable groups in proteins can be eitheracidic, bearing
negative elementary charge when deprotonated~Glu, Asp,
Tyr, Cys, C terminus!, or basic, bearing positive elementar
charge when protonated~Lys, Arg, His, N terminus!. The
pKa values of these groups, in a molecular environmen
the protein, usually lie between 2 and 12, which means
at any givenpH of experimental interest, there are som
functional groups that are almost permanently charg
These charged groups are the main source of electros
fields inside and outside the protein, and also frequently t
are active in protein function.

The pKa’s of titratable groups in biopolymers can b
measured, e.g., by multidimensional nuclear magnetic re
nance~NMR! spectroscopy@4#. They can also be computed
however, theoretical prediction of thepKa’s of titratable
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groups in biopolymers is one of the most challenging ta
for theoretical molecular biophysics@5–10#.

Among the different approaches developed to predict p
tonation equilibria in biomolecules, those based on the
sumption that the difference in protonation behavior of
given group isolated in solution, for which the ionizatio
constant is assumed to be known, and the protonation be
ior in the biopolymer environment is purely electrostatic
origin, have become particularly popular. Calculations of
relevant electrostatic free energies can be based on
Poisson-Boltzmann model of the protein-solvent system
the finite-difference solution to the corresponding Poiss
Boltzmann equation@11#.

The first full pKa calculation using the finite-differenc
Poisson-Boltzmann~FDPB! method was reported in 199
@12# in a study of lysozyme. This calculation was done usi
two different crystal forms of the protein. Both gave differe
sets of predictedpKa values indicating that conformatio
and protonation equilibria are coupled to each other. The
of conformational ensembles generated by molecular dyn
ics ~MD! simulations@10,13–15# or obtained based on NMR
experiments@6,16# has improved the accuracy ofpKa pre-
dictions, compared with calculations on a single x-ray str
ture. However, this does not solve the problem of the c
pling between the conformational and protonation equilib
because the structures were obtained assuming one fixed
tonation state of the titratable residues, and for different p
tonation patterns of residues in a multisite polymer, differe
ensembles of structures are expected@17–19#.

The first MD simulations at constantpH were described
by Mertz and Pettitt@20#. Subsequently, two MD simulation
at constantpH that included titration of functional groups i
a protein@21# and in small amines@22# were described. In
these methods, however, the protonation state was treate
a parameter that describes a continuous change from p
nation to deprotonation. See also a comment on the l
work published in Ref.@23#. It seems necessary to includ
the neutral and charged form of residues explicitly on or
to obtain proper ensembles of structures at a givenpH.

Here we present an approach, where explicit titration
coupled to generation of protein structures consistent w
actualpH during the titration procedure. In this respect, t
presented approach is consistent with the true titration
©2002 The American Physical Society11-1
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periment, e.g., by the NMR spectroscopy. After complet
of the present work, another explicit protonation method
simulating proteins at constantpH was published by Bu¨rgi,
Kollman, and van Gunsteren@24#. The algorithm presented
by these authors is a combination of MD and Monte Ca
~MC! simulations used to generate a Boltzmann distribut
ensemble of protonation states at a givenpH. The free ener-
gies of protonating or deprotonating a residue are calcula
through MD simulation, whereas MC steps sample the p
tonation states of the ionizable residues during an MD sim
lation @24#.

Our algorithm represents a different approach to the pr
lem of conformational and protonational couplings, and i
much less expensive regarding computational demands.
idea behind our approach is simple. It uses well establis
simulation methods: Langevin dynamics, finite-differen
solution to the Poisson-Boltzmann equation describing
solute-solvent system, and a Monte Carlo sampling~LD/
FDPB/MC!. The whole simulated protein trajectory is d
vided into smaller parts. Each subperiod of the simulation
proceeded by the evaluation of protonation probabilities
titratable groups in the starting structure at a chosenpH.
Having these probabilities, the next step is to decide wha
the actual protonation state assumed in the simulation to
low by a Monte Carlo type approach. This step reflects
statistical nature of the proton exchange phenomena and
fact that we do not know, which particular group with
given protonation probability is protonated or deprotona
at the given moment of time. Therefore, we sample a rand
number from the uniform$021% distribution. If the sampled
number is greater than the probability of protonation for
given site, we accept the unprotonated state of this group
further simulation, otherwise, we consider it protonate
Next, the simulation is done for a defined period of time,
last structure is saved, and protonation probabilities
evaluated again. And the whole procedure is repeated u
the simulation is done for the whole assumed period of tim
In this way, we account for the coupling between the resid
interactions, which induce structural changes and the pr
nation phenomena. The proposed method is very genera
can be applied to different types of protein models. The
tial testing of the procedure was carried out on the expl
atom model, which we present below.

This method can be also used with another type of M
sampling. A Monte Carlo program described elsewhere@25#
results in a predefined number of protein protonation patte
with the lowest energies found during the Monte Ca
search at a givenpH. Instead of sampling protonation o
individual sites described above, another Monte Carlo s
pling can be done, which selects the whole protonation p
tern from the list with probability governed by their energie
The simulations using this variant of the MC sampling a
currently under way.

II. SIMULATION METHODS

As the first step, an x-ray structure of a protein is tak
from the Protein Data Bank~PDB! @26#. All modifications,
minimizations, and MD calculations are performed with t
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CHARMM @27# package using theCHARMM22 @28# force field.
Where necessary, we add residues or patches based o
rameters of related molecules or groups found in the fo
field. The left hand side of Fig. 1 presents a ribbon mode
the 56-residue ovomucoid third domain available from t
PDB under access code 2OVO @29#, employed in the presen
tests.

Prediction of protonation states of titratable residues
investigated proteins is done according to procedures
scribed elsewhere@30#, using theUHBD @31,32# program for
computing necessary electrostatic free energy interaction
trices and theHYBRID program @33# to compute titration
curves for the titratable residues from the interaction mat
We consider all titratable residues, i.e.,N andC termini, Asp,
Glu, Lys, Arg, His, and Tyr, as well as Cys, not involved
disulfide bonds.

For each titration run, an ensemble of 100 structures
each pH is generated by the Langevin dynamics meth
~LD! @34# implemented inCHARMM. All LD simulations are
performed with a solvent viscosity of 10 ps21, a time step of
1 fs, and a dielectric constant of 15. A solute-solvent syst
should rather be represented by two dielectric consta
however the LD algorithm implemented in theCHARMM pro-
gram, without the use of implicit solvation methods~see the
Discussion!, does not allow for this. The solute dielectr
constant of 15 was used just to decrease effects of elec
static interactions on the protein’s structure, which in tr
solution are diminished by an aqueous solvent. Electrost
calculations by theUHBD program also require specificatio
of the solute dielectric constant. We try three values of 4
and 15. Dielectric constant of the solvent was kept 80 in
UHBD simulations. See also the Discussion section.

The initial x-ray structure with assigned protonation sta
corresponding topH51 undergoes minimization~100 steps
for the steepest descent, SD, and 40 steps of conjugated
dient, CG, method! and dynamics: 15 ps of heating from 5
K to 400 K, 15 ps of cooling to 293 K, 20 ps~293–600 K!,
20 ps~600–293 K!, 10 ps~293 K to 450 K!, 10 ps~450–293
K!, 20 ps of equilibration at 293 K. Prior to titration, eac
structure is minimized with 50 SD and 50 CG steps. A
ensemble of 100 structures is generated for eachpH. In be-
tween these structures, minimization~100 SD and 40 CG
steps! and short LD runs~1 ps equilibration! are performed
to account for any subtle changes. For every 20 structure

FIG. 1. Ribbon diagram of ovomucoid third domain. Left: orig
nal x-ray structure. Right: examples of structures generated forpH
1, 2, and 3.
1-2
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LANGEVIN DYNAMICS OF PROTEINS AT CONSTANTpH PHYSICAL REVIEW E 66, 051911 ~2002!
FIG. 2. Left: Average residue charge fluctu
tions at constantpH values of 4 and 10 for cho-
sen residues of ovomucoid. The structures we
generated with a heating procedure for every 1
structures. Right: The results of thePROCHECK

test for a pH range from 1–17 for ovomucoid
structures from the proposed titration procedu
with different dielectric constants. The crosses i
dicate the average value for eachpH and the
circles are values for particular structures.
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heating and cooling run~100 steps of SD and 40 steps of C
minimization followed by 20 ps of heating to 400 K and 2
ps cooling to 293 K, 20 ps of equilibration! is added to
enable the protein to sample different minima. When swit
ing to a newpH, we allow the protein to undergo longe
minimization~100 steps SD and 40 steps CG! and dynamics
@20 ps ~50–600 K!, 20 ps ~600–293 K!, 15 ps ~293
–450 K!, 15 ps~450–293 K!#, and 20 ps equilibration.

The whole procedure is repeated frompH51 to pH
517220. With modifications in the length of simulation
and temperatures, it has been applied to tetrapeptides:
Gly-X-Ala, whereX5Tyr, Lys, Glu. As the result of such
titration run average protonation fractions and their stand
deviations as functions ofpH for all titratable residues are
stored, and used to determinepKa’s of the residues by fit of
a Henderson-Hasselbalch equation@1# relating protonation
fraction p, pH, andpKa:

p5
1

10pH2pKa11
. ~4!

III. RESULTS

A. Generated structures of proteins

Examples of structures of ovomucoid third domain gen
ated forpH 1, 2, and 3 are shown in the right hand side
Fig. 1. All these structures resemble the parent, x-ray st
ture. This is because of the three disulfide bonds kept in
in all simulations. Ovomucoid third domain is stable ove
wide range of solution conditions@35–37#, and it is properly
folded even at such extremepH values as 1.5 and 12.5@38#.
Therefore, it was rather justified to keep the disulfide bon
intact in our simulations. For proteins without such bon
some other means like harmonic restraint potentials can
used in order to preserve the general fold of the prote
Without disulfide bonds or a harmonic restraint potential,
overall structure at low and highpH values would quickly
unfold due to strong electrostatic repulsion. However, s
restraints should be used with caution as not to prevent la
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conformational changes that would occur in nature at
treme solution conditions. This point will be discussed fu
ther below.

B. Stability and quality of generated structures

The presented Langevin dynamics algorithm at cons
pH underwent several tests. First, two 1000-structure
runs at a constantpH value of 7 were done, one with heatin
every 100 structures, the other without. The predicted pro
nation factors for both types of simulation are very simil
Comparing the actual structures, we note that all structu
are similar to that of the original x-ray structure, all the e
ments of secondary structure are conserved. However, t
generated without prior heating tend to exhibit a drift fro
the original structure with generation time. The ones fro
the heated run are stable. The stability of the procedure
also checked by generation of 1000 protein structures at c
stant pH values of 4 and 10. The left hand side of Fig.
shows the sampling of local minima due to the heating p
cedure. These results show that these changes in stru
result in minor protonation fraction, and thus average resi
charge changes forpH values close to thepKa value of a
given residue. It proves the necessity of the heating and c
ing runs during generation of an ensemble of structures f
given pH.

Second, structures generated in the above runs w
checked with thePROCHECKprogram@39#. Most of the struc-
tures passed the test. TheG factor, which is the measure o
compliance of a structure with experimentally establish
norms for proteins ~i.e., Ramachandran plots, covale
bonds! and ideally should be above20.5 is presented in the
right hand side of Fig. 2. The result is an average taken o
all generated structures.

C. Test titrations of tetrapeptides

As a third test, titration of tetrapeptides containing Ty
Lys, and Glu residues was done. The 12 titration curves
tained using different random number generator seeds
each tetrapeptide is presented in Fig. 3. In such a way,
1-3
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A. M. WALCZAK AND J. M. ANTOSIEWICZ PHYSICAL REVIEW E 66, 051911 ~2002!
produced a trustworthy statistical ensemble of independ
results. In case of Tyr, the curves are all similar and
standard deviation from the averagepKa value is 0.13,
which is of the same order as the experimental error. T
averagepKa result of 9.84 differs by 0.26pH unit, i.e., twice
standard deviation for 12 runs, from the experimentally
termined 10.160.1 of Ref.@40#. For Lys and Glu, our resul
of 11.160.6 and 4.360.4 are such as that of the mention
experiment: 11.160.2 and 4.360.1, respectively.

D. Results for ovomucoid

Finally, titration simulations were done for ovomuco
third domain. An example of titration curves for Tyr 31, G
43, and Lys 55 are shown in Fig. 4, and allpKa values
obtained are listed in Table I. Figure 4, besides final titrat
curves, also visualizes the extent of fluctuations in proto
tion probability for chosen residues by presenting aver
protonation fractions for three different titration runs t
gether with their standard deviations. It can be seen

FIG. 3. The titration curves~12 thin gray lines! for tyrosine,
lysine, and glutamic acid in the tetrapeptide obtained witheLD

515,e t i t58. The average~thick black line! results arepKaTyr

59.8460.26, pKaLys511.060.6, andpKaGlu54.360.4 ~at confi-
dence level 0.95!; the experimental values reported Ref.@40# are
10.160.1 for Tyr, 11.060.2 for Lys, and 4.360.1 for Glu.

FIG. 4. The protonation fractions as functions ofpH, obtained
from three separate titration runs~marked with circle, square, an
diamond symbols, together with their standard deviations! for ty-
rosine 31, glutamic acid 43, and lysine 55 in the ovomucoid
tained witheLD515,e t i t58. The thick black line illustrates the fi
of the Henderson-Hasselbalch equation to thepH dependence of the
average protonation fractions from the three runs.
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these fluctuations are rather small for Lys 55 and quite s
stantial for Tyr 31. Table I, besides results for three differe
dielectric constant pairs used in the LD simulation and tit
tion, also presents results of titration of the original x-r
structure using methods described in Ref.@30# for three sol-
ute dielectric constants.

One can see that although there is a huge change in
computational method used forpKa prediction in compari-
son to the traditional way of using FDPB methodology, t
overall agreement with the experimental data is satisfact
Yet our procedure is able to make predictions not availa
when using the traditional titration methodology. This is e
plained with the example of tyrosine residues. As it can
seen from Table I, the traditional FDPB methodology do
not fit equally well, experimentalpKa’s of tyrosines for one
solute dielectric constant. With the solute dielectric const
of 4, the result for Tyr 20 is acceptable, but the results for T
11 and Tyr 31 are by 4.3 and 5.5pH units too large. When
the solute dielectric constant is increased to 8 and 15, the
an improvement regarding Tyr 11 and Tyr 31 but the res
for Tyr 20 is by 2pH units too low. The order of titration of
Tyr residues predicted by the traditional methodology see
to be coupled with solvent accessibility and does not ag
with that of the experiment. Low solvent accessibility and
interactions with other titratable groups may act to prev
deprotonation. But these factors can be overcome by con
mational change in the protein forced by an increasing tr
for a given group to deprotonate when the difference
tween thepH andpKa values of a given group in an isolate
state increases. This can cause the given group to dep
nate at a lowerpH than predicted by calculations for th
x-ray structure or any other rigid structure. This is clearly t
result of our LD simulations in the case of the tyrosine re
dues visible in Table I. Using our titration method based
Langevin dynamics at constantpH, we get a much bette
agreement with experimental data for these residues. It
be seen that the order of titration of the three Tyr residue
LD simulations is different in each column, and fo
eLD /e t i t515/8, it is as observed in the experimental da
For this combination of dielectric constants, the agreem
with the experimental data is the best.

The extent of the protein’s structural fluctuations, on o
hand, and the extent of systematic structural variation w
changes inpH are illustrated in Fig. 5. It should be noted th
the structures presented in this figure were obtained fr
continuous simulations going frompH 1, through all subse-
quentpH values. The end of the polypeptide chain visible
the right hand side is the C terminus. Although the sets
protein structures are not viewed from exactly the same p
spective, it seems justified to indicate two following featur
which can be noticed: the first is the global movement of
C-terminal part of the protein, visible in the two-dimension
picture as an ‘‘opening and closing’’ of the ‘‘cleft’’ betwee
the C-terminal part and the rest of the chain. The sec
feature, is the fact that the structure on the left hand s
seems to be more stable as thepH is increased.

Structural changes duringpH titrations can be also visu
alized by looking at the potential electrostatic interactio
between the groups. These are the potential interactions

-
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TABLE I. The pKa’s of titratable residues in ovomucoid computed for x-ray structure~columns 4–6!, and for 100 LD structures
~columns 7–9!, with different solute dielectric constants, compared with experimental data@38#. Column 2 shows the solvent accessibility
each residue in the x-ray structure.

X-ray structure LD structure

Residue
% Solvent

accessibility
Experimental

pKa 4
e
8 15 15/4

eLD/e t i t

15/8 15/15

NTER 8.0 8.1 7.9 7.7 7.6 7.9 7.6
ASP 7 58 ,2.7 3.6 3.4 3.3 3.9 4.3 3.8
GLU 10 76 4.2 3.7 3.9 4.0 3.9 3.9 4.1
TYR 11 19 10.2 14.5 12.0 9.7 12.6 10.9 10.4
LYS 13 37 9.9 10.0 10.8 11.4 10.2 11.0 11.4
GLU 19 45 3.2 4.3 3.8 3.6 4.5 3.9 4.0
TYR 20 54 11.1 11.5 9.3 9.1 11.2 11.1 9.9
ARG 21 11.8 12.0 12.2 11.6 12.2 12.5
ASP 27 48 ,2.3 5.9 4.7 4.1 4.0 3.9 3.7
LYS 29 47 11.1 11.4 11.3 11.2 10.6 11.7 11.0
TYR 31 14 .12.5 18.0 14.3 12.5 11.2 13.0 10.8
LYS 34 34 10.1 10.4 10.8 11.2 10.5 10.4 11.0
GLU 43 84 4.8 4.6 4.5 4.5 5.4 5.1 5.0
HSP 52 33 7.5 7.7 7.3 7.1 6.3 6.3 5.0
LYS 55 50 11.1 10.3 11.4 11.3 11.3 11.3 11.3
CTER ,2.5 3.1 3.2 3.3 3.7 3.0 3.5
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their energies contribute to the protein’s free energy o
when both interacting residues are simultaneously ioniz
Figure 6 portrays how the potential interactions of Glu
with Lys 29 and Lys 55 vary with the change ofpH as a
result of accompanying changes in the protein structure,
the three independent titration runs. Results obtained fo
particular simulation are displayed on the same level in
figure. It can be seen that the protein went through differ
regions of the phase space in these three simulations du
titration. In the first run, structures atpH around 10 enabled
strong interactions between Glu 43 and Lys 29, with ne
gible interactions between Glu 43 and Lys 55, whereas in
third run, the situation was just the opposite. In the sec
run, neither of these interactions were significant. Howev
the sampled structures exhibited another significant inte
tion of Glu 43 with a basic titratable group, namely His 5
~data not shown!. This indicates that satisfactory sampling
protein structures as a function ofpH might require more
runs. Nevertheless, it seems that these results prove the
fulness of LD simulations at constantpH.

Coming back to the data shown in Table I, we can ma
some more observations. The results obtained by us are
sistent with previous findings of Ref.@41#: Lys 34 does not
interact with Glu 19; Arg 21 seems to be responsible
stabilizing interactions with Glu 19 (OuH distance in the
appropriatepH range is about 2.4 Å). The distance betwe
the oxygen in Asp 7 and backbone amid, as well as the a
chain hydroxyl of Ser 9 predicts the forming of hydrog
bonds. These results also agree with those of Ref.@41#. It is
also worth noting, that in the 15/8 simulation all Tyr, Gl
and Asp residues titrate in the same order as in experim
Predictions for all residues, but Asp 7, Asp 27, and Lys
are consistent with the experiment. This inaccuracy is du
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a statistical fluctuation and/or omission of some features
our simulation~see below!.

IV. DISCUSSION

We have presented an algorithm to simulate proteins
constantpH value and application of this algorithm in pre
diction of pKa values of protein titratable residues. It seem
that LD dynamics of proteins, together with the tradition
FDPB methodology for titration is a very promising comp
tational tool for prediction of protonation equilibria i
biopolymers.

The most important result of the present work is the s
nificant improvement in prediction ofpKa values of tyrosine
residues in comparison to the traditional FDPB methods
this would be observed for other proteins, remains to
checked. However, there are examples of poor results of
plication of the traditional FDPB methodology for tyrosin
residues in other proteins, e.g., for Tyr 53 in hen egg wh
lysozyme~HEWL! @9,12#, Tyr 25, and Tyr 97 in ribonucleas
A @30#. In these cases, our method may prove successfu
can be also noted that for the remaining residues, the ag
ment with experimental data is not worse than that obtai
with the traditional FDPB method. And there are numero
ways of improvement. For example, 15/8 simulations pred
for Asp 7, pKa54.3, whereas experimental value is belo
2.7. However, LD simulations with fixed protonation stat
where Asp 7 was deprotonated resulted in ensemble of st
tures for which the averagepKa of Asp 7 was below 2.
Similar behavior was observed for Asp 27. Therefore,
seems that the elevatedpKa values obtained for these res
dues with free movement in protonation degrees of freed
together with conformational sampling results from some
1-5
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ficiencies in the LD algorithm used for structure generati
One obvious problem is that these simulations were d
without realistic aqueous solvent and ionic strength effect
can be expected that inclusion of these effects should he
lot.

FIG. 5. Ribbon diagrams of ovomucoid third domain structu
sampled from simulations at five consecutivepH values, frompH 5
~top! to pH 9 ~bottom!. Every tenth structure out of one hundre
structures sampled at eachpH value is shown.
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It should be noted that the best results of the present w
were obtained for assumed solute dielectric constant, la
than more commonly accepted values of 2–4. As was
ready written above, the solute dielectric constant used in
simulations serves, to some extent, as a crude way to
crease the significance of electrostatic interactions. Here
would rather like to discuss the solute dielectric const
used in FDPB calculations. An extensive account on the
tory of the problem of solute dielectric constants of solva
proteins was given in a recent review by Schutz and Wars
@42#. As they stated, the protein dielectric constant is sim
a parameter that depends on the model used. In an intere
study, introducing a new concept of the reference mo
compound, used in the FDPB method forpKa calculations,
Grycuk has indicated@43# that parametrization of this
method in terms of the ionization constant, thepKa,model for
the so called model group depends on atomic partial cha
and radii of the solute molecule, on the definition of t
dielectric boundary between solute and solvent, and on
solute dielectric constant. Having the charges, radii and
boundary defined independently, one is left with the sol
dielectric constant and thepKa,model as the only adjustable
parameters in the model being applied for prediction of p
tonation equilibria by the FDPB method. Having experime
tal pKa values for a number of small, test molecules conta
ing the same model group, one can choose such a so
dielectric constant and correspondingpKa,model, which give
the best reproduction of the experimentalpKa’s for all the
test molecules. Such a procedure leads to a solute diele
constant of 6–8, i.e., substantially above values expected
the basis of only electronic polarization contribution. An
this is obtained with inclusion of full conformational sam
pling for molecular structures of test compounds. When t
is used for proteins, the optimal solute dielectric constan
even higher, i.e., 12–14@43,44#. Therefore, the fact that the
best results in this study were obtained for solute dielec
constant of 8 in comparison to 4 and 15 is not surprisi
However, if 15/8 is the most optimal pair of solute dielectr
constants used in LD and FDPB calculations, it remains to
established by studies for other proteins. It should also

s

-

e

FIG. 6. The change in poten
tial interactions of Glu 43 with
Lys 29 and Lys 55, with the
change of structure when w
change thepH of the environ-
ment.
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remembered that inclusion of implicit solvation and ion
strength effects in the algorithm certainly will affect 15
dielectric constant used in LD simulations, as discus
above.

As mentioned in the Introduction, after completion of th
work, a paper by Bu¨rgi, Kollman, and van Gunsteren on
similar subject has appeared@24#. Their algorithm combines
MD simulations and MC sampling, and as the algorithm d
scribed in the present work, it explicitly accounts for diss
ciated or associated protons. These authors applied
method to HEWL, which has approximately twice the nu
ber of residues as ovomucoid third domain, and they p
formed only three simulations atpH values 4, 3, and 2, re
spectively. Also they considered only titration of carboxy
side groups and that of the C terminus in their study. It see
that their method is much more demanding regarding co
puter resources than the method presented in this work. W
our algorithm, one titration run for ovomucoid third doma
from pH 1 to pH 20 takes 180 h of CPU time on a PC wi
1.5-GHz processor working under Linux operating syste
Moreover, its accuracy in predictingpKa values of titratable
residues in proteins is not better than that of the algorit
presented in this work. Therefore, it seems that regardless
future of the method by Bu¨rgi, Kollman, and van Gunsteren
the LD/FDPB/MC algorithm presented here is worthy of fu
ther work and development.

As it was already mentioned above, the method prese
in this work can be extended and/or improved in many wa
using ideas described already by others, although t
implementation in the algorithm described above require
substantial amount of work and is not by any means strai
forward and simple. Among these, are inclusions of solv
y

-

t.,

s:

d,

05191
d

-
-
eir
-
r-

s
-

ith

.

he

ed
s,
ir
a
t-
t

accessibility and ionic strength in the LD protocol@45#. In
CHARMM there is a possibility of adding implicit solvent in
teractions by means of the generalized Born model@46#,
however, this elongates the simulation time by a factor o
Other methods~effective energy function,@47# and analytical
continuum solvent,@48#! are not available with the 22 forc
field and nonpolar hydrogens. Due to these implementa
problems, implicit solvation effect was not employed at t
stage of constructing the whole algorithm described in
present paper. Inclusion of implicit solvation effects is r
lated to the problem of stability of the protein during sim
lations. We expect that structural constraints mention
above could be significantly reduced or even removed a
the MD simulations described by Bu¨rgi, Kollman, and van
Gunsteren@24#, when solvent effects are included in a mo
realistic way. In such a case, the algorithm presented in
work could be used to study structural changes in prote
afterpH jumps or changes in structural and protonation eq
libria in protein ligand association processes and influenc
these on the association rates by calculations, similar to c
putation of rate constants by Brownian dynamics simulatio
@31#. Finally, it seems worthy to incorporate the new conce
of the model group described recently by Grycuk@43# and
changes in hydration entropy upon protonation, described
Warwicker @49#.

ACKNOWLEDGMENTS

This work was financially supported by Fogarty, US
~Grant No. TW00768!, and by the State Committee for Sc
entific Research, Poland~KBN! ~Grant No. 6P04A00121!.
Molecular structures were visualized usingICMLITE @50#.
.L.

in

ct.,

s:

r,
nd

S.
@1# L. Stryer,Biochemistry, 4th ed.~Freeman, New York, 1995!.
@2# P.W. Atkins,Physical Chemistry~Freeman, New York, 1994!.
@3# D. Poland,Cooperative Equilibria in Physical Biochemistr

~Clarendon Press, Oxford, 1978!.
@4# K. Bartik, C. Redfield, and C.M. Dobson, Biophys. J.66, 1180

~1994!.
@5# A. Warshel, Biochemistry20, 3167~1981!.
@6# J. Antosiewicz, J.A. McCammon, and M.K. Gilson, Biochem

istry 35, 7819~1996!.
@7# R.A. Dimitrov and R.R. Crichton, Proteins: Struct., Func

Genet.27, 576 ~1997!.
@8# Y.Y. Sham, Z.T. Chu, and A. Warshel, J. Phys. Chem. B101,

4458 ~1997!.
@9# H.W.T. van Vlijmen, M. Schaefer, and M. Karplus, Protein

Struct., Funct., Genet.33, 145 ~1998!.
@10# A.A. Gorfe, P. Ferrara, A. Caflisch, D.N. Marti, H.R. Bosshar

and I. Jelesarov, Proteins: Struct., Funct., Genet.46, 41 ~2002!.
@11# J. Warwicker and H.C. Watson, J. Mol. Biol.157, 671 ~1982!.
@12# D. Bashford and M. Karplus, Biochemistry29, 10219~1990!.
@13# D. Bashford and K. Gerwert, J. Mol. Biol.224, 473 ~1992!.
@14# H. Zhou and M. Vijayakumar, J. Mol. Biol.267, 1002~1997!.
@15# L. Sandberg and O. Edholm, Biophys. Chem.65, 189 ~1997!.
@16# V. Dillet, H. Dyson, and D. Bashford, Biochemistry37, 10298

~1998!.
@17# C.H. Pletcher, E.F. Bouhoutsos-Brown, R.G. Bryant, and G
Nelsestuen, Biochemistry20, 6149~1981!.

@18# D.R. Ripoll, Y.N. Vorobjev, A. Liwo, J.A. Vila, and H.A.
Scheraga, J. Mol. Biol.264, 770 ~1996!.

@19# S.T. Wlodek, J. Antosiewicz, and J.A. McCammon, Prote
Sci. 6, 373 ~1997!.

@20# J.E. Mertz and B.M. Pettitt, Int. J. Supercomput. Appl.8, 47
~1994!.

@21# A.M. Baptista, P.J. Martel, and S.B. Petersen, Proteins: Stru
Funct., Genet.27, 523 ~1997!.

@22# U. Börjesson and P.H. Hu¨nenberger, J. Chem. Phys.114, 9706
~2001!.

@23# A.M. Baptista, J. Chem. Phys.116, 7766~2001!.
@24# R. Bürgi, P.A. Kollman, and W.F. van Gunsteren, Protein

Struct., Funct., Genet.47, 469 ~2002!.
@25# J. Antosiewicz, Biophys. J.69, 1344~1995!.
@26# F.C. Bernstein, T.F. Koettzle, G.J.B. Williams, E.F. Meye

M.D. Brice, J.R. Rodgers, O. Kennard, T. Shimanouchi, a
M.J. Tasumi, J. Mol. Biol.123, 557 ~1977!.

@27# B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States,
Swaminathan, and M. Karplus, J. Comput. Chem.4, 187
~1983!.

@28# A.D. MacKerell, Jr.et al., J. Phys. Chem. B102, 3586~1998!.
1-7



lt,

d

n,

an

nd

.

net.

.

et.

t.

A. M. WALCZAK AND J. M. ANTOSIEWICZ PHYSICAL REVIEW E 66, 051911 ~2002!
@29# W. Bode, O. Epp, R. Huber, M. Laskowski, Jr., and W. Arde
Eur. J. Biochem.147, 387 ~1985!.

@30# J. Antosiewicz, J.M. Briggs, A.E. Elcock, M.K. Gilson, an
J.A. McCammon, J. Comput. Chem.17, 1633~1996!.

@31# M.E. Davis, J.D. Madura, B.A. Luty, and J.A. McCammo
Comput. Phys. Commun.62, 187 ~1991!.

@32# J.D. Maduraet al., Comput. Phys. Commun.91, 57 ~1995!.
@33# M.K. Gilson, Proteins: Struct., Funct., Genet.15, 266 ~1993!.
@34# G. Widmalm and R.W. Pastor, J. Chem. Soc., Faraday Tr

88, 1747~1992!.
@35# W. Ardelt and J.M. Laskowski, J. Mol. Biol.220, 1041~1993!.
@36# L. Swint-Kruse and A.D. Robertson, Biochemistry34, 4724

~1995!.
@37# C.B. Arrington and A.D. Robertson, Biochemistry36, 8686

~1997!.
@38# W.R. Forsyth, M.K. Gilson, J. Antosiewicz, O.R. Jaren, a

A.D. Robertson, Biochemistry37, 8643~1998!.
@39# R.A. Laskowski, M.W. MacArthur, D.S. Moss, and J.M

Thornton, J. Appl. Crystallogr.26, 283 ~1993!.
05191
s.
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